Quantitative analysis of anti-resonance in single-ring, hollow-core fibres
نویسندگان
چکیده
منابع مشابه
Rydberg atoms in hollow-core photonic crystal fibres
The exceptionally large polarizability of highly excited Rydberg atoms-six orders of magnitude higher than ground-state atoms--makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here ...
متن کاملUltimate low loss of hollow-core photonic crystal fibres.
Hollow-core photonic crystal fibres have excited interest as potential ultra-low loss telecommunications fibres because light propagates mainly in air instead of solid glass. We propose that the ultimate limit to the attenuation of such fibres is determined by surface roughness due to frozenin capillary waves. This is confirmed by measurements of the surface roughness in a HC-PCF, the angular d...
متن کاملDesigning Hollow-Core Photonic Bandgap Fibres Free of Surface Modes
Hollow-core photonic bandgap fibres (PBGFs) confine light within an air-core due to photonic bandgap effects. Such fibres allow for a very weak overlap between the guided mode and the fibre structure, which paves the way for novel and technologically enabling properties, such as low nonlinearity, high damage thresholds and transmission beyond silica’s own transparency window [1]. Mid-IR transmi...
متن کاملHollow-core photonic-crystal fibres for laser dentistry.
Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 microm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 microm and are focused on a tooth surface in vitro t...
متن کاملGeneration of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF.
We report generation of an ultrafast supercontinuum extending into the mid- infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 µm light from an optical parametric amplifier. The simple fiber structure offers shallow dispersion and flat transmission in the near and mid-infrared, enabling the generation of broadband spectra extending from 270 nm to 3.1 µm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2019
ISSN: 1094-4087
DOI: 10.1364/oe.27.027745